LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 FIRST SEMESTER - APRIL 2023

MT 1100 - MATHEMATICS FOR PHYSICS

Date: 08-05-2023 \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

PART A

Answer ALL the questions
($10 \times 2=20$)

1. If $y=e^{a x}$, find y_{n}.
2. Find the polar subtangent and subnormal of the curve $r=a \theta$.
3. Write the expansion for $(1+x)^{n}$.
4. Define diagonal matrix.
5. Find the Laplace transform of $t^{2}+2 t+1$.
6. Find $L^{-1}\left(\frac{1}{s-3}\right)$.
7. Write the expansion of $\cos n \theta$.
8. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. Write down the probability mass function for the Binomial distribution.
10. What is the chance that a leap year selected at random will contain 53 Sundays?

PART B

Answer any FIVE questions

11. Using Leibnitz formula, find the $n^{\text {th }}$ derivative of $x^{2} \log x$.
12. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Find the sum to infinity of the series $1+\frac{3}{2!}+\frac{5}{3!}+\frac{7}{4!}+\cdots \infty$.
14. If $A=\left(\begin{array}{ll}3 & 4 \\ 1 & 1 \\ 2 & 0\end{array}\right)$ and $B=\left(\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right)$, then show that $(A B)^{T}=B^{T} A^{T}$.
15. Find $L^{-1}\left(\frac{1}{s(s+1)(s+9)}\right)$.
16. Write down the expansion of $\sin ^{6} \theta$ in series of cosines of multiples of θ.
17. If $\sin (A+i B)=x+i y$, prove that $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$ and $\frac{x^{2}}{\cosh ^{2} A}+\frac{y^{2}}{\sinh ^{2} A}=1$.
18. Two unbiased dice are thrown. Find the probability that (i) both the dice show the same number (ii) the first die shows 6 (iii) the total of the numbers on the dice is 8 (iv) the total of the numbers on the dice is greater than 8 .

PART C

Answer any TWO questions
19. (a) Find the length of the subtangent, subnormal, tangent and normal at (a, a) on the cissoid $y^{2}=\frac{x^{3}}{2 a-x}$.
(b) Find the maximum and minimum values of the function $f(x)=2 x^{3}-3 x^{2}-36 x+10$.
(10+10)
20. (a) Find the characteristic roots and associated characteristic vectors for the matrix

$$
A=\left(\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)
$$

(b) Verify Cayley- Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$.
21. (a) Find (i) $L\left(e^{-5 t} \cos ^{2} t\right)$ (ii) $L\left(t e^{-t} \sin t\right)$.
(b) If $\tan (x+i y)=u+i v$, prove that $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.
22. (a) Find $\lim _{\theta \rightarrow 0}\left(\frac{n \sin \theta-\sin n \theta}{\theta(\cos \theta-\sin n \theta)}\right)$.
(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age in years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of Members	3	61	132	153	140	51	2

\$\$\$\$\$\$

