LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – APRIL 2023

MT 1100 – MATHEMATICS FOR PHYSICS

Date: 08-05-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

PART A

Answer ALL the questions

- 1. If $y = e^{ax}$, find y_n .
- 2. Find the polar subtangent and subnormal of the curve $r = a\theta$.
- 3. Write the expansion for $(1 + x)^n$.
- 4. Define diagonal matrix.
- 5. Find the Laplace transform of $t^2 + 2t + 1$.

6. Find
$$L^{-1}\left(\frac{1}{s-3}\right)$$
.

- 7. Write the expansion of $cosn\theta$.
- 8. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 9. Write down the probability mass function for the Binomial distribution.
- 10. What is the chance that a leap year selected at random will contain 53 Sundays?

PART B

Answer any FIVE questions

- 11. Using Leibnitz formula, find the n^{th} derivative of $x^2 log x$.
- 12. Find the angle of intersection of the cardioids $r = a(1 + \cos\theta)$ and $r = b(1 \cos\theta)$.
- 13. Find the sum to infinity of the series $1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \cdots \infty$.

14. If $A = \begin{pmatrix} 3 & 4 \\ 1 & 1 \\ 2 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix}$, then show that $(AB)^T = B^T A^T$. 15. Find $L^{-1} \left(\frac{1}{s(s+1)(s+9)} \right)$.

- 16. Write down the expansion of $sin^6 \theta$ in series of cosines of multiples of θ .
- 17. If sin(A + iB) = x + iy, prove that $\frac{x^2}{sin^2A} \frac{y^2}{cos^2A} = 1$ and $\frac{x^2}{cosh^2A} + \frac{y^2}{sinh^2A} = 1$.
- 18. Two unbiased dice are thrown. Find the probability that (i) both the dice show the same number (ii) the first die shows 6 (iii) the total of the numbers on the dice is 8 (iv) the total of the numbers on the dice is greater than 8.

PART C

Answer any TWO questions (2 x 20 =40) 19. (a) Find the length of the subtangent, subnormal, tangent and normal at (*a*, *a*) on the cissoid $y^2 = \frac{x^3}{2a-x}$.

(b) Find the maximum and minimum values of the function $f(x) = 2x^3 - 3x^2 - 36x + 10$.

(10+10)

20. (a) Find the characteristic roots and associated characteristic vectors for the matrix

$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}.$$

 $(10 \times 2 = 20)$

Max.: 100 Marks

(5 x 8 =40)

	/1	0	3 \	
(b) Verify Cayley- Hamilton theorem for the matrix $A =$	2	1	-1).	(12+8)
	$\backslash 1$	-1	1/	

- 21. (a) Find (i) $L(e^{-5t}cos^2t)$ (ii) $L(te^{-t}sint)$.
 - (b) If tan(x + iy) = u + iv, prove that $\frac{u}{v} = \frac{sin2x}{sinh2y}$.
- 22. (a) Find $\lim_{\theta \to 0} \left(\frac{n \sin\theta \sin n\theta}{\theta (\cos\theta \sin n\theta)} \right)$.

(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age in	20-30	30-40	40-50	50-60	60-70	70-80	80-90
years							
No. of	3	61	132	153	140	51	2
Members							

\$\$\$\$\$\$\$

(10+10)

(8+12)